Chemical Kinetics

1.	What will be the	fraction of molecules	having energy	equal to or greater	than activation en	nergy, Ea?

(a) K

(b) A

(c) Ae-Ea/Rt

(d) e-Ea/Rt

▼ Answer

Answer: d

2. RCOOR' + $H_2O \xrightarrow{HCI}$ RCOOH + R'OH

What type of reaction is this?

(a) Second order

(b) Unimolecular

(c) Pseudo-unimolecular

(d) Third order

▼ Answer

Answer: c

3. Which among the following is a false statement?

(a) Rate of zero order reaction is independent of initial concentration of reactant.

(b) Half life of a third order reaction is inversely proportional to square of initial concentration of the reactant.

(c) Molecularity of a reaction may be zero or fraction. (d) For a first order reaction, $t_{1/2} = \frac{0.693}{K}$

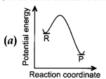
▼ Answer

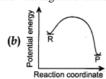
Answer: c

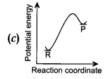
4. Which of the following statements about the catalyst is true?

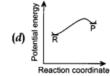
(a) A catalyst accelerates the rate of reaction by bringing down the activation energy.

(b) A catalyst does not participate in reaction mechanism.


(c) A catalyst makes the reaction feasible by making ΔG more negative.


(d) A catalyst makes equilibrium constant more favourable for forward reaction.


▼ Answer


Answer: a

5. An endothermic reaction with high activation energy for the forward reaction is given by the diagram.

▼ Answer

Answer: c

6. For the reaction $N_2+3H_2 \rightarrow 2NH_3$ if $\frac{\Delta[NH_3]}{\Delta t}=2\times 10^{-4}$ mol $L^{-1}s^{-1}$, the value of $\frac{-\Delta[H_2]}{\Delta t}$ would be

(a) $1 \times 10^{-4} \text{ mol L}^{-1}\text{s}^{-1}$

(b) $3 \times 10^{-4} \text{ mol L}^{-1}\text{s}^{-1}$

(c) $4 \times 10^{-4} \text{ mol L}^{-1}\text{s}^{-1}$

(d) $6 \times 10^{-4} \text{ mol L}^{-1}\text{s}^{-1}$

▼ Answer

Answer: b

7. The rate of a certain hypothetical reaction

A + B + C \rightarrow products is given by $\mathbf{r} = \frac{-d[\mathbf{A}]}{dt} \mathbf{K}[\mathbf{A}]^{1/2} [\mathbf{B}]^{1/3} [\mathbf{C}]^{1/4}$. The order of the reaction is

(b) 13/14

(c) 12/13

(d) 13/12

▼ Answer

Answer: d

8. In the formation of S02 by contact process;

 $2SO_2 + O_2 \rightarrow 2SO_3$, the rate of reaction was measured as $\frac{-d[O_2]}{dt} = 2.5 \times 10^{-4} \text{ mol L}^{-1}\text{s}^{-1}$. at

The rate of formation of of S03 will be

(a) $-5.0 \times 10^{-4} \text{ mol L}^{-1}\text{s}^{-1}$

(b) $-1.25 \times 10^{-4} \text{ mol L}^{-1}\text{s}^{-1}$

(c) $3.75 \times 10^{-4} \text{ mol L}^{-1}\text{s}^{-1}$

(d) $5.00 \times 10^{-4} \text{ mol L}^{-1}\text{s}^{-1}$

▼ Answer

Answer: d

9. For a chemical reaction A→B, it is found that the rate of reaction doubles when the concentration of A is increased four times. The order of reaction

(a) Two

(b) One

(c) Half

(d) Zero

▼ Answer

Answer: c

10. The half life of the first order reaction having rate constant $K = 1.7 \times 10^{-5} \text{s}^{-1}$ is

(a) 12.1 h

(b) 9.7 h

(c) 11.3 h

(d) 1.8 h

▼ Answer

Answer: c